astronomicalwonders:

A Mosaic of the Tarantula Nebula 
"The Tarantula Nebula (also known as 30 Doradus, or NGC 2070) is an H II region in the Large Magellanic Cloud (LMC). It was originally thought to be a star, but in 1751 Nicolas Louis de Lacaille recognized its nebular nature.
The Tarantula Nebula has an apparent magnitude of 8. Considering its distance of about 49 kpc (160,000 light-years), this is an extremely luminous non-stellar object. Its luminosity is so great that if it were as close to Earth as the Orion Nebula, the Tarantula Nebula would cast shadows. In fact, it is the most active starburst region known in the Local Group of galaxies. It is also one of the largest such region in the Local Group with an estimated diameter of 200 pc. The nebula resides on the leading edge of the LMC, where ram pressure stripping, and the compression of the interstellar medium likely resulting from this, is at a maximum. At its core lies the compact star cluster R136 (approximate diameter 35 light years) that produces most of the energy that makes the nebula visible. The estimated mass of the cluster is 450,000 solar masses, suggesting it will likely become a globular cluster in the future.”
Credit: Mazlin from starshadows.com/Wikipedia High-res

astronomicalwonders:

A Mosaic of the Tarantula Nebula

"The Tarantula Nebula (also known as 30 Doradus, or NGC 2070) is an H II region in the Large Magellanic Cloud (LMC). It was originally thought to be a star, but in 1751 Nicolas Louis de Lacaille recognized its nebular nature.

The Tarantula Nebula has an apparent magnitude of 8. Considering its distance of about 49 kpc (160,000 light-years), this is an extremely luminous non-stellar object. Its luminosity is so great that if it were as close to Earth as the Orion Nebula, the Tarantula Nebula would cast shadows. In fact, it is the most active starburst region known in the Local Group of galaxies. It is also one of the largest such region in the Local Group with an estimated diameter of 200 pc. The nebula resides on the leading edge of the LMC, where ram pressure stripping, and the compression of the interstellar medium likely resulting from this, is at a maximum. At its core lies the compact star cluster R136 (approximate diameter 35 light years) that produces most of the energy that makes the nebula visible. The estimated mass of the cluster is 450,000 solar masses, suggesting it will likely become a globular cluster in the future.”

Credit: Mazlin from starshadows.com/Wikipedia

jtotheizzoe:

Richard Feynman discusses why there is a difference between the past and the future, in this clip from his legendary 1964 lecture series at Cornell: The Character of Physical Law.

It’s well worth taking 45 minutes out of your day to hear Dr. F explain why the workings of nature unfold in one direction. You see, while we innately know that the future is different from the past, and so much of our conscious experience is built around the fundamental just-so-ness of time moving forward, the equations of physics describing phenomena from gravity to friction can be run in either direction without breaking the rules. Yet irreversibility is what we observe.

That’s where entropy and probability come into play. When we take into account complex systems, like the jiggles and wiggles of the uncountable atoms that make up our bodies and this chair and my coffee and our world and even out to the scale of the universe itself, there is simply a greater chance that things will become more disordered than less. It’s not that the universe can’t run in reverse, it’s just that there are so many other ways for it not to.

Or as Feynman says, nature is irreversible because of “the general accidents of life”.

This seven-part series, which Open Culture has assembled in its entirety, captures the physicist in his prime, one year before he won the Nobel Prize and became a household name. Feynman was seemingly born for the scientific stage. He had this uncanny ability to weave profound observations of the universe’s inner workings with off-the-cuff (and often brash) humor. James Gleick wrote of Feynman’s unique style and skill:

He had a mystique that came in part from sheer pragmatic brilliance–in any group of scientists he could create a dramatic impression by slashing his way through a difficult problem–and in part, too, from his personal style–rough-hewn, American, seemingly uncultivated.

This clip was a huge influence on my recent video Why Does Time Exist? Although my take scarcely measures up to Dr. Feynman, you can watch below:

(via thenewenlightenmentage)

ageofdestruction:

te coule un drôle de regard: Surface of Mars, photographed by Mars Express, 23rd December 2008.

1°N to 14°S, 64°E on the Terra Tyrrhena. For scale, Verlaine Crater - divided between the 5th and 6th images - is about 40 km across. The crater at bottom left of the 7th image is only a few degrees north of this gif.

Verlaine Crater is named after Verlaine, a village of about 3,500, rather than the groundbreaking queer poet Paul-Marie Verlaine (1844-1896). Curiously the IAU record the village as being in France, while it appears to be in the largely French-speaking Walloon Region of Belgium.

Composite of 3 visible light images for colour, and 1 monochrome image for detail. 

Image credit: ESA. Composite: AgeOfDestruction.

(via thenewenlightenmentage)

thenewenlightenmentage:

Quarks in six-packs: Exotic Particle Confirmed
For decades, physicists have searched in vain for exotic bound states comprising more than three quarks. Experiments performed at Jülich’s accelerator COSY have now shown that, in fact, such complex particles do exist in nature. This discovery by the WASA-at-COSY collaboration has been published in the journal Physical Review Letters. The measurements confirm results from 2011, when the more than 120 scientists from eight countries discovered for the first time strong indications for the existence of an exotic dibaryon made up of six quarks.
For a long time, physicists were only able to reliably verify two different classes of hadrons: volatile mesons comprising one quark and one antiquark and baryons consisting of three quarks. Protons and neutrons, which make up atomic nuclei, are examples of the latter. In recent years, however, there has been growing evidence for the existence of additional types of hadrons, for example, hybrids, glueballs, and multiquarks. In 1964, the physicist Freeman Dyson was the first to predict such more complex states. But any reliable verification proved impossible for many years because almost no measurements could be reproduced.
Continue Reading High-res

thenewenlightenmentage:

Quarks in six-packs: Exotic Particle Confirmed

For decades, physicists have searched in vain for exotic bound states comprising more than three quarks. Experiments performed at Jülich’s accelerator COSY have now shown that, in fact, such complex particles do exist in nature. This discovery by the WASA-at-COSY collaboration has been published in the journal Physical Review Letters. The measurements confirm results from 2011, when the more than 120 scientists from eight countries discovered for the first time strong indications for the existence of an exotic dibaryon made up of six quarks.

For a long time, physicists were only able to reliably verify two different classes of hadrons: volatile mesons comprising one quark and one antiquark and baryons consisting of three . Protons and neutrons, which make up atomic nuclei, are examples of the latter. In recent years, however, there has been growing evidence for the existence of additional types of hadrons, for example, hybrids, glueballs, and multiquarks. In 1964, the physicist Freeman Dyson was the first to predict such more complex states. But any reliable verification proved impossible for many years because almost no  could be reproduced.

Continue Reading

starsaremymuse:

This awesome and long mathematical formulation is the Standard Model. The Standard Model is currently the best description there is of the subatomic world, however it does not explain the complete picture. The theory incorporates only three out of the four fundamental forces, omitting gravity. For more information visit: http://www.stfc.ac.uk/PPD/resources/pdf/StandardModel09.pdf
 (Via https://www.facebook.com/silent.arsonist)
High-res

starsaremymuse:

This awesome and long mathematical formulation is the Standard Model. The Standard Model is currently the best description there is of the subatomic world, however it does not explain the complete picture. The theory incorporates only three out of the four fundamental forces, omitting gravity. For more information visit: http://www.stfc.ac.uk/PPD/resources/pdf/StandardModel09.pdf


(Via https://www.facebook.com/silent.arsonist)

(via thenewenlightenmentage)

skeptv:

Invasion of the Yellow Crazy Ants!

MinuteEarth provides an energetic and entertaining view of trends in earth’s environment — in just a few minutes!

Thanks to Wet Tropics Management Authority for supporting MinuteEarth - http://wettropics.gov.au/

via Minute Earth.
Subbable - https://subbable.com/minuteearth
podcast - http://podcast.minuteearth.com/
Facebook - http://facebook.com/minuteearth
Twitter - http://twitter.com/MinuteEarth